The generalised Fitting subgroup of a profinite group
نویسنده
چکیده
The generalised Fitting subgroup of a finite group is the group generated by all subnormal subgroups that are either nilpotent or quasisimple. The importance of this subgroup in finite group theory stems from the fact that it always contains its own centraliser, so that any finite group is an abelian extension of a group of automorphisms of its generalised Fitting subgroup. We define a class of profinite groups which generalises this phenomenon, and explore some consequences for the structure of profinite groups.
منابع مشابه
A generalization to profinite groups
Let G be a profinite group and let α be an automorphism of G. Then α is topologically intense if, for every closed subgroup H of G, there exists x ∈ G such that α(H) = xHx. Topologically intense automorphisms are automatically continuous, because they stabilize each open normal subgroup of the group on which they are defined. We denote by Intc(G) the group of topologically intense automorphisms...
متن کاملProfinite Groups Associated to Sofic Shifts Are Free
We show that the maximal subgroup of the free profinite semigroup associated by Almeida to an irreducible sofic shift is a free profinite group, generalizing an earlier result of the second author for the case of the full shift (whose corresponding maximal subgroup is the maximal subgroup of the minimal ideal). A corresponding result is proved for certain relatively free profinite semigroups. W...
متن کاملSubgroups of Finite Index in Profinite Groups
One way to view Theorem 1.1 is as a statement that the algebraic structure of a finitely generated profinite group somehow also encodes the topological structure. That is, if one wishes to know the open subgroups of a profinite group G, a topological property, one must only consider the subgroups of G of finite index, an algebraic property. As profinite groups are compact topological spaces, an...
متن کاملNormal subgroups of profinite groups of finite cohomological dimension
We study a profinite group G of finite cohomological dimension with (topologically) finitely generated closed normal subgroup N . If G is pro-p and N is either free as a pro-p group or a Poincaré group of dimension 2 or analytic pro-p, we show that G/N has virtually finite cohomological dimension cd(G) − cd(N). Some other cases when G/N has virtually finite cohomological dimension are considere...
متن کامل2 00 6 On the profinite topology of right - angled Artin groups
In the present work, we give necessary and sufficient conditions on the graph of a right-angled Artin group that determine whether the group is subgroup separable or not. Also, we show that right-angled Artin groups are conjugacy separable. Moreover, we investigate the profinite topology of F 2 × F 2 and of the group L in [22], which are the only obstructions for the subgroup separability of th...
متن کامل